
245A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

Back	testing	and	trading	a	system	real	time	is	easy	if	you	have	access	to	TradeStation™,	TradersStudio,	
Ninja	Trader	or	any	of	the	other	available	commercial	applications.		If	you	don’t	then	its	pretty	much	up	
to	you	and	a	calculator	or	spreadsheet.		In	a	lot	of	cases	this	is	all	you	need	to	calculate	tomorrow’s	or-
ders.		However,	back	testing	using	these	simple	tools	can	be	a	tremendous	nightmare	and	lead	to	inaccurate	
results.		For	the	past	18	years	I	have	worked	on	creating	this	type	of	software	and	I	thought	it	would	be	fun	
to	dedicate	the	next	three	installments	of	George’s	Corners	to	the	development	of	a	trading	system	order	
generator	and	back	tester	using	tools	that	are	generally	found	on	any	computer:		Excel	and	Visual	Basic.		

Microsoft	Visual	Basic	for	applications	is	found	in	Microsoft	Word	and	Excel	and	be	found	under	the	tools	
menu	of	these	applications.		You	can	also	buy	the	Visual	Basic	IDE	(Integrated	Development	Environment)	
that	can	build	standalone	applications.		For	our	purposes	we	don’t	need	that	type	of	power	and	we	want	
to	use	what	we	already	have.		If	you	have	Microsoft	Excel,	then	you	are	in	business.		Well	almost.		Some	
knowledge	of	programming	is	necessary	to	get	the	full	benefits	of	the	next	three	installments.		If	you	are	just	
reading	this	to	get	yourself	acquainted	with	the	concepts,	then	you	will	also	be	rewarded	by	receiving	the	
Dynamic	Break	Out	System	(DBS)	Excel	workbook.		

We	will	tip	toe	into	the	building	of	our	software	by	first	writing	the	code	for	generating	the	next	day’s	orders	
for	the	DBS.		Before	we	can	write	one	line	of	code	we	need	to	set	up	a	spreadsheet	with	data	and	some	
column	headings.		I	have	done	most	of	the	tedious	work	for	you.		Go	to	ftp://www.futurestruth.com/pub	and	
download	the	DynamicBreakOut.xls	file	to	your	computer	and	open	it	up.		It	should	look	something	like	
this.		I	simply	created	some	headings	for	the	information	that	I	thought	would	be	needed	to	help	trade	the	
system	and	imported	the	September	2007	contract	of	the	bonds.		I	included	the	date,	open,	high,	low	and	
close	data	in	the	spreadsheet.		Before	I	can	explain	the	other	column	headings	you	will	need	to	understand	
how	the	DBS	system	works.		

246A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

I	developed	the	DBS	back	in	1996	for	a	series	of	articles	in	Futures	magazine	and	the	system	has	done	
fairly	well	since.		The	backbone	of	the	system	is	the	old	Donchian	N	week	breakout;	buy	the	highest	high	N	
weeks	back	and	sell	short	the	lowest	low	N	weeks	back.		Instead	of	using	a	fixed	N	value	or	an	optimized	N	
value	for	the	different	markets,	I	decided	to		let	the	market	tell	the	system	the	value	of	N.		This	was	accom-
plished	by	the	use	of	an	adaptive	algorithm;	a	method	that	changes	itself	based	on	available	resources.		My	
algorithm	was	based		on	the	notion	that	market	noise	was	directly	related	to	volatility;	the	more	volatility	
the	more	noise.		Systems	seem	to	get	confused	during	noisy	markets	so	I	increased	N	when	the	markets	ex-
hibited	higher	levels	of	volatility	and	decreased	N	when	the	markets	quieted	down.		As	N	increased	so	did	
the	look	back	period	which	in	turn	pushed	the	buy	and	sell	points	further	away	from	the	current	market.		A	
decrease	in	N	brought	the	buy/sell	points	closer	and	this	occurred	during	periods	of	low	volatility.		A	fixed	
money	management	stop	was		also	included	in	the	system	even	though	it	didn’t	help	the	overall	results	that	
much.	

Now	let’s	look	back	at	the	column	headings	in	the	spreadsheet.		Some	of	the	columns	are	self	explanatory	
so	I	won’t	go	over	them.		StdDev	shows	the	standard	deviation	for	the	past	thirty	days.		LookBack	shows	
the	value	of	N	-	as	you	can	see	it	moves	in	the	same	direction	as	the	standard	deviation.	 Highest High
and	Lowest Low	columns	show	the	highest	high	and	lowest	low	for	past	N	(Look	Back)	days.		Cur-
rent Pos	shows	the	current	position	of	the	DBS	system.		Entry Price	shows	the	current	trade’s	entry	
price.		Protective Stop	gives	the	current	money	management	stop	price	and	Trade P/L	shows	the	profit	
or	loss	of	the	closed	trades.		I	also	have	a	Floor	and	Ceiling	cell	designation.		Because	we	are	adjusting	
N	(lookback	value)	based	on	the	adaptive	algorithm,	we	need	to	put	constraints	on	this	value.		We	don’t	
want	to	look	back	further	than	60	days	nor	less	than	20.		I	did	not	need	to	include	all	these	columns	in	this	
spreadsheet	to	calculate	the	next	day’s	trade	signal,	but	I	thought	it	would	help	with	debugging	and	trading	
the	system.		We	can	simply	look	at	any	date	and	see	what	the	standard	deviation,	highest	high,	lowest	low,	
current	position	and	protective	values	were.		

Before	we	jump	into	
the	code	let’s	go	ahead	
and	run	the	DBS	macro	
(VB’s	nomenclature	
for	sub	program)	so	we	
can	see	the	end	result.		
Make	sure	you	have	
the	DynamicBreak-
Out	workbook	open	
and	go	under	the	tools	
menu.		From	there	go	
to	Macro	and	slide	
over	to	the	sub	menu	
and	select	Macros.		
This	should	bring	up	
the	Macro	dialog	box	
with	RunDBS	listed	at	
the	top.		Click	the	Run	
button	and	the	Dynam-
ic	BreakOut	dialog	box	
will	come	up	and	

247A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

look	something	like	this.		Here	you	can	change	the	Floor, Ceiling, Protective Stop, Big Point Value
and the Number of Ramp Up Bars.			The	Floor	and	Ceiling	values	limit	the	N-day	look	back	value.		In	
the	default	case	the	value	can’t	go	below	20	nor	above	60.		The	protective	stop	is	set	to	$1000	and	since	we	
are	working	with	the	US	bonds	the	Big	Point	Value	is	also	set	to	$1000.		The	Big	Point	Value	is	the	dol-
lar	amount	of	a	1.00	move.		So	a	move	from	106.01	to	107.01	would	be	equivalent	to	a	$1000	move.		The	
Number of Ramp Up Bars	is	the	value	of	the	number	of	days	necessary	to	calculate	the	trade	signals.		
Since	the	N-day	value	can	be	60	days,	we	set	this	value	to	60.		The	other	five	text	boxes	are	where	the	
information	for	the	next	day’s	trade	signal	is	presented.		In	this	case	we	will	be	liquidating	our	short	posi-
tion	at	111.6875		on	a	stop.		Since	we	are	working	with	the	bond	market,	you	would	need	to	convert	this	
to	32nds	before	you	placed	the	stop	order.		We	currently	have	$3656.25	in	OTE.		If	you	wanted	to	use	this	
spreadsheet	to	generate	your	next	day’s	trading	signal	you	would	need	to	add	another	line	of	data	in	the	
spreadsheet	and	then	re-run	the	macro.		This	software	isn’t	that	sophisticated	yet,	but	it	is	sufficient	enough	
to	help	you	with	generating	your	signals	without	error.		The	best	part	is	it’s	free,	and		when	we	are	done,	
adaptable	to	any	end	of	day	trading	system.		

Let’s	go	ahead	and	ease	into	some	of	the	Visual	Basic	code.		The	first	few	lines	of	code	are	preceded	by	
a	single	quote	(‘).		This	lets	the	VB	interpreter	know	the	line	or	lines	following	are	comments	and	not	to	
be	translated	into	machine	language.		These	comments	make	the	code	easier	to	read	and	understand	for	
someone	else	other	than	the	programmer.		So	the	first	four	lines	are	just	their	to	explain	what	the	program	
is	doing	and	who	wrote	it	and	when	they	wrote	it.

‘Subroutine to calculate the Buy and Sell Signal for the
‘Dymanic Break Out System
‘Template can be used to program any system
‘programmed by George Pruitt in June 2007

The	next	line	gives	the	subroutine	a	name	and	the	names	of	the	variables	that	will	pass	back	and	forth	from	
the	Dynamic	Break	Out	dialog	box.		All	of	the	information	that	is	included	in	the	dialog	box	is	communi-
cated	to	the	subroutine	through	this	one	line	of	code.

Sub DBSSub(flr, clg, orderString1, orderString2, orderPrice1, orderPrice2, lastPL, protStop, big-
PointValue, rampUP)

‘Name of the subroutine <sub program> that will calculate the signals.
‘We will pass <send and receive> these arguments from/to the dialog box.
‘ flr - the minimum look back period
‘ clg - the maximim look back period
‘ orderString - in english what we will do
‘ orderPrice - the price where we will take action
‘ lastPL - current trade profit or loss
‘ protStop - what stop in points is being used
‘ bigPointValue -$ value of a full point move-$1000 for bonds-$1250 for currencies
‘ rampUp - how many days needed for calculations before a trade can take place

The	next	lines	of	code	starting	with	the	keyword	DIM	is	where	we	declare	the	variables	that	we	will	be	us-
ing	in	the	subroutine.			The	names	are	somewhat	explanatory	-	myDate(500)	is	declaring	a	list	of	500	items	
that	will	hold	the	dates	of	all	the	data.		Dim	is	simply	tell	VB	to	reserve	enough	space	to	handle	500	dates,	

248A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

opens,	highs,	lows,	closes	and	any	other	variables	that	we	may	need.		If	we	have	more	than	500	rows	of	
data,	then	we	would	need	to	change	the	500	to	whatever	we	may	need	plus	another	100	or	so.		It’s	better	to	
reserve	more	space	than	we	need,	because	if	we	don’t	it	can	lead	to	major	computer	errors.		

Dim stdArr(29), myDate(500), myHigh(500), myLow(500), myOpen(500), myClose(500) As Double
Dim cnt, i, j, length, hh, ll, dataCnt, baseRow as Integer
Dim pos, price, trdProfit, stoppedOut As Integer
Dim stopPrice, myPrice, myPos, longLiqPrice, shortLiqPrice as Integer
Dim buyStop, sellStop, displayRow As Integer
Dim delta, realLength, stdDev, prevStdDev As Double

Because	we	have	two	rows	reserved	for	column	headings	we	need	to	skip	these	two	rows	and	we	need	to	
select	the	first	sheet	in	the	workbook.		

baseRow = 3 ‘Where the actual data starts
dataCnt = 0
Sheets(“Sheet1”).Select ‘Select Sheet1 to access the data

The	next	lines	are	key	to	understanding	how	VB	works	with	cells	and	the	lists	we	have	created	to	hold	the	
data.		A	cell,	as	we	all	know,	is	referred	to	by	first	is	row	and	then	its	column.		The	first	cell	in	any	spread-
sheet	is	located	at	row	1,	column	1.		This	can	also	be	written	as	Cells(1,1).		Cells	is	a	keyword	built	into	
VB	and	the	parentheses	are	necessary.		The	first	number	inside	the	parentheses	is	the	row	location	and	the	
second	is	the	column	location.		Again,	I	have	made	several	comments	inside	the	code	to	help	explain	what	
we	are	doing	here	(see	the	(‘)	at	the	beginning	of	each	line).

‘Read in the data
‘Column 1 - Date -- Cells(3,1) - Cells(Row,Column)
‘Column 2 - Open -- Cells(3,2)
‘Column 3 - High -- Cells(3,3)
‘Column 4 - Low -- Cells(3,4)
‘Column 5 - Close -- Cells(3,5)

Column	1	holds	all	of	the	different	dates	and	column	2	holds	all	the	opening	prices,	etc.,.		See	how	the	
first	date	is	referenced	by	Cells(3,1).		Here	we	are	saying	the	first	date	is	located	in	row	3	column	1	(3,1).		
The	first	open	price	is	located	in	row	3	column	2	(3,2).		To	get	the	data	into	our	arrays	(lists)	we	must	loop	
through	every	row	that	contains	valid	data.		Since	we	won’t	know	exactly	how	many	times	to	loop,	we	can	
loop	until	we	find	a	row	without	any	data.		This	is	exactly	what	we	are	doing	with	our	Do	While	loop.		No-
tice	how	dataCnt	starts	at	zero	-	VB	allows	zero	based	arrays,	which	simply	means	the	first	element	(item)	
in	our	list	can	be	indexed	(referred	to)	by	the	number	0.		The	first	date	in	the	spreadsheet	is	in	Cells(3,1),	
whereas	the	first	item	in	our	myDate	list	is	myDate(0).			

Do While Cells(dataCnt + baseRow, 1) <> “”
 myDate(dataCnt) = Cells(dataCnt + baseRow, 1)
 myOpen(dataCnt) = Cells(dataCnt + baseRow, 2)
 myHigh(dataCnt) = Cells(dataCnt + baseRow, 3)
 myLow(dataCnt) = Cells(dataCnt + baseRow, 4)
 myClose(dataCnt) = Cells(dataCnt + baseRow, 5)

249A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

 dataCnt = dataCnt + 1
Loop

Here	we	start	collecting	the	information	that	was	provided	in	the	dialog	box	-	floor,	ceiling,	protective	
stop,	rampUp,	and	Big	Point	Value.		We	also	put	the	flr	and	clg	values	into	the	Floor	and	Ceiling	cells	on	
the	spreadsheet.		We	initially	set	length	(the	number	of	days	that	we	look	back	to	obtain	the	highest/lowest	
high/low	values)	to	the	flr	value	(20),	and	we	set	our	pos	to	0	(flat),	our	buy	stop	price	to	999999	and	our	
sell	short	stop	to	0.		

Cells(2, 2) = flr ‘Plug in the floor input into this cell on the spreadsheet -- for display
Cells(2, 4) = clg ‘Plug in the ceiling input into this cell on the spreadsheet

length = flr
pos = 0 ‘Start us out flat

protStop = protStop / bigPointValue

longLiqPrice = 999999
shortLiqPrice = 0
buyStop = 999999
sellStop = 0
stdDev = 1

Now	that	we	have	read	all	of	our	data	into	our	arrays	we	need	to	loop	through	each	day	and	calculate	our	
buy/sell	points	and	see	if	a	trade	has	occurred.		We	need	to	skip	past	the	number	of	ramp	up	days	so	that	we	
can	lookback	in	time	and	calculate	our	standard	deviations,	highest	highs	and	lowest	lows.			We	will	also	
start	inputting	our	calculations	into	cells	on	the	spreadsheet.		Since	our	lists	are	not	exactly	in	synch	with	our	
cells	index,	we	must	off	set	our	cells	by	the	baseRow	value.

displayRow = rampUP + baseRow ‘Start on the first date after the ramp up period
i = rampUP ‘Array index starting at the first day after the rampUp
Do While Cells(displayRow + 1, 1) <> “” ‘Do while there is something in the first column

So	we	will	index	our	data	arrays	with	i	and	our	cells	with	displayRow.		The	next	step	is	to	calculate	the	stan-
dard	deviation	for	the	past	thirty	days.		This	is	done	in	the	“for-next	loop”	below.		We	know	how	many	days	
(iterations)	we	are	looking	back	so	we	can	use	a	“for	loop”.		So	we	start	at	our	current	i	value	and	go	back	
into	time	30	days	and	load	a	temporary	list	with	30	elements	of	closing	prices.

‘ start looping through all data
‘ Setup calculations
 cnt = 0
 For j = i - 29 To i
 stdArr(cnt) = myClose(j) ‘load the last 30 days of closing prices into the
cnt = cnt + 1 ‘stdArr Array or List
 Next j

250A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

After	the	loop	we	pass	our	list	to	the	StDev	worksheet	function	and	it	passes	back	the	standard	deviation	of	
the	data	sample.

 prevStdDev = stdDev
 stdDev = Application.WorksheetFunction.StDev(stdArr)‘pass the list to the Standard

We	then	store	the	standard	deviation	in	the	column	#6.		Notice	how	the	variable	displayRow	is	used	to	refer-
ence	the	row	and	a	fixed	number	is	used	for	the	column.		The	column	number	stays	constant	whereas	the	
row	number	increases	as	we	go	through	the	different	days	of	data.		The	next	few	lines	of	code	is	the	adap-
tive	algorithm.		Notice	how	I	determine	the	change	in	standard	deviation	from	day	to	day.		I	take	today’s	
standard	deviation	and	subtract	the	previous	SD	(standard	deviation)	and	then	divide	by	today’s	SD.		This	
results	in	either	a	positive	or	negative	number.		I	then	add	1	to	this	value	and	then	multiple	by	the	previous	
days	length.		If	the	SD	goes	up	then	the	length	goes	up	-	if	the	SD	goes	down	then	the	length	goes	down.

 Cells(displayRow, 6) = stdDev
 delta = 1
 delta = (stdDev - prevStdDev) / stdDev + 1 ‘calculate the delta of the Std. Devs
 length = length * delta ‘change the lookback length
 length = Application.WorksheetFunction.Round(length, 0)
 ‘we are working with whole numbers for lookback
 Cells(displayRow, 7) = length ‘put the length variable in column 7
 If (length < flr) Then length = flr ‘make sure our length is not too short
 If (length > clg) Then length = clg ‘make sure our length is not too long

Now	that	we	know	the	value	of	the	look	back	or	N,	we	can	set	up	our	loop	to	look	back	in	time	to	attain	the	
highest	high	and	lowest	low	values	that	will	become	our	buy	and	sell	stops.			Again	we	know	ahead	of	time	
how	many	days	or	iterations	that	we	will	need	to	look	back,	so	we	can	use	a	for-next	loop.

 hh = 0
 ll = 999999
 For k = i - (length - 1) To i‘start at the current day and look back lenght period
 If (myHigh(k) > hh) Then hh = myHigh(k) ‘get the highest high length lookback
 If (myLow(k) < ll) Then ll = myLow(k) ‘get the lowest low length lookback
 Next k
 Cells(displayRow, 8) = hh ‘put the highest high on the sheet in column 8
 Cells(displayRow, 9) = ll ‘put the lowest low on the sheet in column 9

Once	we	loop	back	N-days	we	can	store	the	highest/lowest	high/low	values	in	column	8	and	9	respectively.		
If	you	are	unaccustomed	on	how	these	loops	work,	just	send	me	an	email	and	I	will	give	you	a	quick	tuto-
rial.		The	next	lines	of	code	is	really	the	meat	of	the	order	generation	and	soon	to	be	back	testing	software.

Lets	see	if	a	trade	has	occurred!		Each	iteration	of	a	loop	signifies	a	day	of	data,	so	we	start	at	the	end	of	the	
day	with	a	new	buy	and	sell	stop.		We	also	set	a	temporary	flag	(stoppedOut)	to	determine	if	we	get	stopped	
out	of	a	trade.

 stoppedOut = 0
 buyStop = hh

25�A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

 sellStop = ll

First	off	we	check	to	see	if	we	our	protective	stop	is	closer	to	the	market	than	our	reversal	stop.	Here	is	what	
happens	if	have	a	long	position:		check	to	see	if	the	next	bars	(i	is	the	current	bar	index	so	i	+	1	would	be	
the	next	bars	index)	low	price	is	below	or	equal	to	our	protective	stop	and	our	protective	stop	is	closer	than	
our	reversal	sell	stop.		If	it	is	then	we	change	our	pos	variable	to	0	(flat)	and	set	our	price	to	our	protective	
stop	price.		We	do	need	to	check	to	see	if	the	market	gapped	through	our	protective	stop.		This	is	done	by	
comparing	our	price	with	the	open	price	of	the	next	bar.		If	the	open	price	is	below	our	protective	stop	we	
then	reassign	price	to	the	open	of	the	next	bar.		Since	we	are	exiting	a	long	position,	we	know	there	will	be	
profit/loss	associated	with	this	trade.		We	take	the	price	that	we	got	out	of	the	trade	and	subtract	the	entry	
price	of	the	trade.		If	the	price	is	above	the	entry	price	then	we	have	a	profit,	else	we	have	a	loss.		We	then	
multiply	the	difference	by	the	big	point	value	to	get	the	P/L	in	dollars.		We	then	set	the	stoppedOut	flat	to	1	
or	true.		We	put	the	P/L	in	column	13.

 If pos = 1 And myLow(i + 1) <= longLiqPrice And longLiqPrice > sellStop Then
 pos = 0
 price = longLiqPrice
 If (myOpen(i + 1) < price) Then price = myOpen(i + 1)
 trdProfit = (price - entryPrice) * bigPointValue
 Cells(displayRow + 1, 13) = trdProfit ‘put trade profit in column 13
 stopPrice = 0
 stoppedOut = 1
 End If

Just	the	opposite	is	done	to	check	for	the	short	side.		We	check	the	next	days	high	against	the	protective	stop	
and	make	sure	the	protective	stop	is	closer	than	the	buy	reversal	stop.			We	compare	the	next	bars	open	with	
the	protective	stop	to	check	for	a	gap	opening.		We	also	change	the	pos	to	0	for	flat	and	set	the	stoppedOut	
flag	to	1	or	true.

 If pos = -1 And myHigh(i + 1) >= shortLiqPrice And shortLiqPrice < buyStop Then
 pos = 0
 price = shortLiqPrice
 If (myOpen(i + 1) > price) Then price = myOpen(i + 1)
 trdProfit = (entryPrice - price) * bigPointValue
 Cells(displayRow + 1, 13) = trdProfit ‘ put trade profit in column 13
 stopPrice = 99999
 stoppedOut = 1
 End If

Now	if	we	had	a	position	and	the	buy	reversal	was	closer	to	the	market	than	the	protective	stop	or	we	were	
flat,	then	we	check	to	see	if	our	buy	stop	was	hit	by	comparing	the	next	days	high	with	the	buy	stop.		If	the	
high	is	greater	then	we	assign	our	price	to	either	the	buy	stop	or	the	open	of	the	next	bar.		We	also	need	to	
check	if	we	closed	out	an	existing	position	and	if	so	calculate	the	P/L.

 If (pos <> 1 And myHigh(i + 1) >= hh And stoppedOut = 0) Then
 price = hh
 If myOpen(i + 1) > price Then price = myOpen(i + 1)

252A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

 longLiqPrice = price - protStop
 If (pos = -1) Then
 trdProfit = (entryPrice - price) * bigPointValue
 Cells(displayRow + 1, 13) = trdProfit ‘ put trade profit in column 13
 End If
 pos = 1
 End If

Now	we	check	to	see	if	our	sell	stop	was	hit,	if	we	are	not	already	short.		Again	we	calculate	our	P/L	based	
on	if	were	long	coming	into	the	new	trade.		Also,	I	forgot	to	mention,	we	go	ahead	and	calculate	our	new	
protective	stop	based	on	our	new	entry	price	and	put	this	information	into	the	shortLiqPrice/longLiqPrice	
variable.

 If (pos <> -1 And myLow(i + 1) <= ll And stoppedOut = 0) Then
 price = ll
 If myOpen(myOpen(i + 1)) < price Then price = myOpen(i + 1)
 shortLiqPrice = price + protStop
 If (pos = 1) Then
 trdProfit = (price - entryPrice) * bigPointValue
 Cells(displayRow + 1, 13) = trdProfit ‘put trade profit in column 13
 End If
 pos = -1
 End If

We	have	checked	for		trades	for	today	and	calculated	our	new	positions	and	any	P/L.		Now	we	put	our	new	
information	into	the	corresponding	columns.		Column	10	is	assigned	our	position,	Column	11	our	entry	
price	and	Column	12	our	protective	stop	price.

 If Cells(displayRow + 1, 3) <> “” Then
 Cells(displayRow + 1, 10) = pos
 Cells(displayRow + 1, 11) = price
 If (pos = 0) Then Cells(displayRow + 1, 12) = 0
 If (pos = 1) Then Cells(displayRow + 1, 12) = longLiqPrice
 If (pos = -1) Then Cells(displayRow + 1, 12) = shortLiqPrice
 If (pos <> 0) Then entryPrice = price
 End If

Done	with	the	day	so	now	let’s	increment	the	data	array	and	cells	indices.		The	keyword	loop	branches	pro-
gram	flow	back	to	the	do-while	statement	and	we	start	a	new	day.				

 i = i + 1 ‘main array counter
 displayRow = displayRow + 1
Loop

We	are	now	sitting	on	the	last	row	of	data.		Cells(displayRow	+	1,1)	(the	date	column)	is	blank	therefore	sig-
nifying	the	end	of	the	data.		Now	we	have	all	the	information	that	we	need	to	display	the	next	bar’s	orders.		
If	we	are	flat	we	put	“Buy	Tomorrow	at”	in	orderString1	and	“SellShort	Tomorrow	at”	in	orderString2.		

253A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

We	put	the	respective	stop	prices	in	orderPrice1	and	orderPrice2.		We	also	put	the	order	information	1	row	
below	the	last	line	of	data	in	columns	2	and	3.		The	orderStrings	and	orderPrices	will	be	passed	back	to	the	
user	dialog.

If (Cells(displayRow + 1, 1) = “”) Then
 If (pos = 0) Then
 orderString1 = “Buy Tommorrow at : “
 orderString2 = “SellShort Tomorrow at : “
 orderPrice1 = hh
 orderPrice2 = ll
 Cells(displayRow + 1, 2) = “Buy Tomorrow at : “
 Cells(displayRow + 2, 2) = “SellShort Tomorrow at : “
 Cells(displayRow + 1, 3) = hh
 Cells(displayRow + 2, 3) = ll
 End If

If	we	are	short	then	we	only	put	“Buy	Tomorrow	at	:	“	in	orderString1	and	into	the	row	following	the	last	
line	of	data.		We	then	calculate	the	current	OTE	and	put	that	into	the	lastPL	variable.		We	compare	the	cur-
rent	protective	stop	to	the	reversal	sell	stop.		If	the	protective	stop	is	closer	we	then	change	the	orderString1	
to	“Liq	Short	Tomorrow.”		OrderPrice1	is	then	loaded	with	either	the	lowest	low	value	or	the	protective	stop	
-	whichever	is	closer.		

 If (pos = -1) Then
 Cells(displayRow + 1, 2) = “Buy Tomorrow at : “ ‘Put the order in the last row
 orderString1 = “Buy Tomorrow” ‘Put the order in the order string holder
 If hh <= shortLiqPrice Then
 Cells(displayRow + 1, 3) = hh
 Else
 Cells(displayRow + 1, 3) = shortLiqPrice ‘Put the order in the last row
 orderString1 = “Liq Short Tomorrow” ‘Put the order in the order string holder
 Cells(displayRow + 1, 2) = “Liq Short Tomorrow”
 End If
 orderPrice1 = Cells(displayRow, 3)
 lastPL = (entryPrice - myClose(i1)) * bigPointValue
 End If

If	we	are	long	we	go	through	the	same	process.		However,	in	this	case	we	dealing	with	selling	short	or	liqui-
dating	a	long	position.

 If (pos = 1) Then
 Cells(displayRow + 1, 2) = “SellShort Tomorrow at :”‘Put the order in the last row
 orderString2 = “SellShort Tomorrow” ‘Put the order in the order string holder
 If ll > longLiqPrice Then
 Cells(displayRow+1, 3) = ll
 Else
 Cells(displayRow+1, 3) = longLiqPrice ‘Put the order in the last row
 orderString2 = “Liq Long Tomorrow” ‘Put the order in the order string holder

254A publication of Futures Truth™ Co.

Issue #3/2007

Using Excel’s Visual Basic to Test & Trade Your System - Part 1

 Cells(displayRow+1, 2) = “Liq Long Tomorrow”‘
 End If
 orderPrice2 = Cells(displayRow+1, 3)
 lastPL = (myClose(i) - entryPrice) * bigPointValue
 End If
 End If
End Sub

Well	that’s	it	for	the	first	part.		Keep	going	through	the	logic	until	you	understand	it.		If	you	do	come	across	
something	you	don’t	understand,	drop	me	an	email	at	gpruitt@futurestruth.com.		This	code	could	be	stream-
lined	a	lot	more	than	what	is	presented.		I	wanted	to	be	as	elaborate	as	possible	in	my	code	to	help	with	read-
ability.		Also	I	have	not	yet	discussed	the	development	of	the	Dynamic	BreakOut	dialog	nor	the	code	that	goes	
along	with	it.		I	just	wanted	to	present	the	software	and	an	overview	of	how	I	put	the	program	together.		Feel	
free	to	take	the	code	and	modify	or	expand	it.		In	the	next	issue	I	will	delve	into	how	the	dialog	box	was	de-
signed	and	the	associated	VB	code.		We	will	also	get	closer	to	developing	a	generic	back	tester.	

255A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

In	the	last	installment	of	George’s	Corner	we	programmed	an	order	generator	for	the	Dynamic	Break	Out	
system.		In	this	Corner,	we	will	use	the	concepts	from	that	program	and	develop	a	universal	back	tester.		
This	back	tester	will	be	a	beta	version	(1.0)	and	will	simply	be	the	backbone	of	what	will	evolve	into	a	
somewhat	sophisticated	software	application.		The	order	generator	program	was	designed	specifically	for	
the	DBS	system.		However,	changing	it	to	
generate	signals	for	a	different	algorithm	
would	not	be	that	difficult.		In	fact	we	will	
be	using	a	good	portion	of	that	code	in	our	
“System	Tester	Vers.	1.0”.		

I	have	programmed	all	of	the	subroutines	into	a	single	module	to	help	reduce	complexity.		Before	we	start,	
I	suggest	downloading	the	code,	printing	it	out	and	going	through	it	as	you	read	this	George’s	Corner.		
You	can	download	the	code	at	ftp://www.FuturesTruth.com/pub/SystemTester.xls.		The	Dim	statements	
at	the	top	of	the	program	are	outside	any	of	the	subroutines	and	their	associated	headers.		By	dimension-
ing	these	variables	here,	we	are	forcing	them	to	have	global	scope.		This	programming	term	simply	means	
that	all	of	the	different	subroutines	in	the	module	will	have	access	to	the	values	that	are	held	in	these	
variables.		If	I	am	in	the	Buy	subroutine	and	I	need	to	know	what	my	current	market	position	is,	I	simply	
evaluate	the	marketPosition	variable.		If	I	hadn’t	put	these	variables	outside	all	of	the	subroutines	and	
made	them	global,	then	they	would	not	be	accessible	to	all	of	the	subroutines.		They	would	only	be	acces-
sible	to	the	subroutine	in	which	they	were	defined	and	to	those	subroutines	in	which	the	variable	is	passed	
as	an	argument.	Since	this	new	programming	consists	of	multiple	subroutines,	unlike	our	order	generator,	
we	needed	certain	variables	visible	to	most	of	the	subroutines.			Making	variables	global	does	come	at	a	
cost	of	memory,	but	with	this	little	program	it	won’t	make	any	difference.		You	may	recognize	some	of	the	
variables	from	the	Dynamic	Break	Out	1.1	code.		The	data	arrays	declarations	are	also	outside	the	main	
subroutine	module.		You	will	also	notice	some	global	variables	like	totProfit, maxDD, perCentWins,
numTrades	and	others.		These	are	the	variables	that	we	will	use	to	load	some	simple	performance	met-
rics.		

Dim stdArr(29), myDate(500), myHigh(500), myLow(500), myOpen(500), myClose(500) As
Double
Dim equityStream(500) As Double
Dim myVal1, myVal2, myVal3, myVal4, myVal5 As Double
Dim marketPosition, entryPrice, executionCount, entryBar As Integer
Dim myBigPointValue, myMinTick, rampUp As Double
Dim totProfit, maxDD, perCentWins, numTrades, numWins, numLosses, commsn As Double

There	are	a	total	of	six	different	subroutines.		This	six	subroutines	make	up	the	System	Tester	program.		
At	this	point	you	maybe	asking	why	not	simply	use	one	huge	subroutine	like	we	did	in	the	order	genera-
tor	instead	of	many	smaller	ones?		This	question	can	be	answered	with	one	word,	modularity.		Modularity	
cuts	down	on	redundant	code.		Every	time	we	close	out	a	trade	we	need	to	calculate	the	profit	or	loss,	

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/SystemTester.xls.

256A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

number	of	wins	and	losses,	cumulative	profit	and	total	trades.		There	are	four	different	times	we	must	do	
this.		These	times	are	when	we:

	 	 1.)	 liquidate	long	position
	 	 2.)	 liquidate	a	short	position
	 	 3.)	 reverse	a	long	position	and	go	short
	 	 4.)	 reverse	a	short	position	and	go	long

In	our	code	we	would	need	to	copy/paste	the	same	code	four	different	times	to	calculate	the	performance	
metrics	of	closing	out	a	trade.		Or	we	could	simply	create	one	CalcTradeResults	subroutine	and	call	it	
four	times.		I	like	the	latter	a	whole	bunch	more.		

The	first	subroutine	that	we	come	across	is	the	main	subroutine.		It	is	called	SystemTester	and	as	in	
similar	fashion	as	the	DBSSub	subroutine	we	pass	information	concerning	the	market	being	tested	to	it.		
Since	we	are	using	multiple	subroutines	and	global	variables	we	don’t	need	to	pass	as	many	arguments	as	
we	did	in	the	DBSSub.		Here	we	are	simply	passing	the	BigPointValue	and	MinTick	of	the	market	be-
ing	tested	and	the	amount	of	rampUp	data	needed	to	generate	a	trade	signal.		

 Sub SystemTester(BigPointValue, MinTick, rampUp)

The	next	few	lines	initiate	some	of	the	global	variables	that	we	will	use	later	on	in	the	program.		You	will	
probably	recognize	the	Do	While	loop	where	we	are	reading	the	data	from	the	worksheet	into	our	data	ar-
rays	if	you	are	following	along	with	a	print	out	of	the	logic.		

stp = 1
lmt = 2
mkt = 3
executionCount = 1
marketPosition = 0
myBigPointValue = BigPointValue
myMinTick = MinTick
commsn = 100 / myBigPointValue
totProfit = 0
maxEquityHigh = -9999999
numTrades = 0

We	then	encounter	another	loop	that	runs	through	each	day	of	data.		This	is	where	we	would	program	our	
trading	system.				I	have	created	a	very	simple	system	to	help	us	test	and	debug	our	code.		This	system	
buys	tomorrow	at	today’s	high	on	a	stop	if	the	today’s	close	is	greater	than	the	previous	day’s	close.		It	
sells	tomorrow	at	today’s	low	if	the	close	of	today	is	less	than	the	prior	day	close.		A	$2000	protective	
stop/	profit	objective	is	also	utilized.		Yeah	-	you	can	probably	already	tell	this	is	going	to	be	a	big	loser.		
But	right	now	we	don’t	care,	we	just	need	something	that	generates	a	bunch	of	trades	so	we	can	put	our	
software	to	the	test.				Some	of	these	subroutine	calls	have	very	similar	names	as	other	testing	platforms	
out	there.		This	was	by	design.		I	have	always	liked	the	keywords	Buy	to	initiate	a	long	position,	Sell to
initiate	a	short	position,	ExitLong	to	exit	a	long	position	and	ExitShort	to	exit	a	short	position.		I	am	not	
to	keen	on	how	TraderStation™	has	changed	these	names	in	there	version	7	and	above.		You	can	tell	who	

257A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

they	wanted	their	audience	to	be.		SellShort	and	BuyToCover		-	gimme	a	break.		This	little	snipped	of	
code	tells	us	how	to	reference	prior	days	(myClose(i) > myClose(i-1))	and	the	arguments	we	need	to	
pass	to	our	subroutines.		

 If myClose(i) > myClose(i - 1) Then Call Buy(“Go-Long”, myHigh(i), stp, i)
 If myClose(i) < myClose(i - 1) Then Call Sell(“Go-Short”, myLow(i), stp, i)

 Call ExitLong(“Long-Liq”, entryPrice - 2000 / myBigPointValue, stp, i)
 Call ExitShort(“Short-Liq”, entryPrice + 2000 / myBigPointValue, stp, i)
 Call ExitLong(“Long-Prof”, entryPrice + 2000 / myBigPointValue, lmt, i)
 Call ExitShort(“Short-Prof”, entryPrice - 2000 / myBigPointValue, lmt, i)

If	you	want	to	compare	today’s	high	with	the	high	5	days	ago,	you	would	simply	subtract	five	from	our	
array	index	(i).		For	example	lets	say	we	want	to	check	to	see	if	today’s	high	is	greater	than	the	high	5	
bars	back.		The	code	that	would	do	this	is: if myHigh(i) > myHigh(i-5) then do something.		When	we	
call	our	Buy/Sell	and	ExitLong/Short	we	must	do	so	with	information	concerning	where	we	want	to	enter	
or	exit.		

The	Buy/Sell	subroutines	need	to	have	the	following	information	passed	to	it	in	this	exact	order:

	 	 entry	signal	name	in	double	quotes	-	any	name	can	be	used
	 	 buy/sell	level
	 	 order	type	-	stp,	lmt	or	mkt	-	use	these	variable	names
	 	 current	bar	-	simply	pass	the	current	value	of	i

If	you	don’t	pass	the	correct	information	in	the	correct	order,	then	the	program	simply	will	not	work.		

	 The	ExitLong/Sell	subroutines	need	to	have	basically	same	information	in	the	same	order:

	 	 exit	signal	name	in	double	quotes	-	any	name	can	be	used
	 	 buy/sell	level
	 	 order	type	-	stp,	lmt	or	mkt	-	use	these	variable	names
	 	 current	bar	-	simply	pass	the	current	value	of	i

If	you	can	manipulate	the	data	arrays	by	changing	their	indices	and	call	a	Buy/Short	and	ExitLong/Short	
subroutine	then	you	can	easily	test	your	trading	ideas.		I	have	done	the	hard	work	for	you.		However,	
since	you	may	want	to	know	what	is	going	on	behind	the	scenes,	and	I	hope	you	do,	we	will	go	over	each	
of	these	subroutines.		Again	remember	this	is	simply	a	backbone	and	as	of	yet	not	very	sophisticated.		You	
could	take	the	ball	and	run	with	this	little	bit	of	code	and	make	something	sophisticated,	or	simply	wait	
until	the	next	George’s	Corner.		Right	now	we	haven’t	programmed	any	indicators	such	as	a	moving	aver-
age,	Bollinger	band,	Keltner	channel,	rsi,	etc.,.		We	may	do	this	in	the	next	issue.			Also	we	are	still	work-
ing	with	the	same	old	data	as	we	did	with	the	order	generator	program	and	I	haven’t	programmed	any	
fancy	looking	reports.		They	may	also	be	programmed	later.		

Let’s	first	take	a	look	at	the	Buy	subroutine	and	see	what	it	does:

258A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

Sub Buy(sigName, trdPrice, orderType, index)
Dim tradeProf, price As Double

price = 0

The	next	snippet	of	code	differentiates	between	order	types	and	checks	the	price	levels	against	the	order	
prices.		If	the	order	is	a	limit	and	we	are	looking	to	buy	then	we	check	the	low	price	of	day	against	the	order	
price.		If	the	low	of	the	day	is	less	than	the	price	we	fill	the	order	at	the	order	price.		We	then	check	against	
the	open	price	to	see	if	there	was	a	gap	opening	below	our	limit.		If	there	was	we	then	fill	the	order	at	the	
open	price.		We	look	at	the	high	of	the	day	to	check	our	buy	stop	level.		If	the	high	exceeds	the	stop	level,	
then	we	know	we	were	filled.		We	first	assume	we	were	filled	at	our	stop	level	and	then	we	check	the	open	
of	the	day	to	see	if	the	market	gapped	up	through		our	price.		The	other	type	of	order	is	simply	a	market	
order	and	we	fill	that	at	the	open	price.

If (marketPosition <> 1) Then
 Select Case orderType
 Case 1
 If myHigh(index + 1) >= trdPrice Then ‘Limit Order
 price = trdPrice
 If (myOpen(index + 1) > trdPrice) Then price = myOpen(index + 1)
 End If
 Case 2
 If myLow(index + 1) <= trdPrice Then ‘Stop Order
 price = trdPrice
 If (myOpen(index + 1) < trdPrice) Then price = myOpen(index + 1)
 End If
 Case 3
 price = myOpen(index + 1) ‘Market Order
 End Select

If	price	<>	0	then	we	know	that	we	were	filled.		See	above	where	we	set	price	equal	to	0.		The	only	way	our	
price	changes	is	if	we	in	fact	did	get	filled.		If	we	get	filled	we	then	select	sheet2	in	our	workbook	and	fill	
the	cells	with	the	trade	information.		We	put	date	of	the	trade	in	column	1,	the	name	of	the	signal	in	column	
2	,	the	entry	price	in	column	3	and	the	profit	or	loss,	if	any,	in	column	4.

If (price <> 0) Then
 Sheets(“Sheet2”).Select
 entryBar = index + 1
 numTrades = numTrades + 1
 executionCount = executionCount + 1
 Cells(executionCount, 1) = myDate(index + 1) See how we put the values in the different
 Cells(executionCount, 2) = sigName columns.

Here	we	call	the	CalcTradeResults	subroutine	to	calculate	the	results	of	our	entry.		We	only	do	this	if	we	
are	currently	in	a	short	position.		

259A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

 If (marketPosition = -1) Then
 Call CalcTradeResults(marketPosition, entryPrice, price, tradeProf)
 End If
 entryPrice = price
 Cells(executionCount, 4) = tradeProf * myBigPointValue
 Cells(executionCount, 3) = entryPrice
 marketPosition = 1 Assign our entry price and change marketPosition to 1 - long.
 End If
 End If

The	Sell	subroutine	does	basically	the	same	thing,	but	we	check	our	order	price	levels	differently	when	
we	are	looking	to	sell.		If	we	are	looking	to	go	short	and	we	wish	to	enter	on	a	limit	order,	we	compare	the	
high	of	the	day	against	our	limit	price.		If	the	high	of	the	day	exceeds	the	sell	limit	then	we	know	we	were	
filled.		We	don’t	know,	until	we	check,	if	we	were	filled	at	the	opening	on	a	gap	up.		Sell	stops	are	below	
the	market	so	we	check	the	low	and	open	of	the	day	against	the	stop	price	to	see	if	we	should	have	been	
filled.	This	is	basically	the	only	difference	between	the	buy	and	sell	subroutines.		

 If (marketPosition <> -1) Then
 Select Case orderType
 Case 1
 If myLow(index + 1) <= trdPrice Then
 price = trdPrice
 If (myOpen(index + 1) < trdPrice) Then price = myOpen(index + 1)
 End If
 Case 2
 If myHigh(index + 1) >= trdPrice Then
 price = trdPrice
 If (myOpen(index + 1) > trdPrice) Then price = myOpen(index + 1)
 End If
 Case 3
 price = myOpen(index + 1)
 End Select

The	ExitLong	subroutine	isn’t	really	that	different	than	the	Sell	Subroutine.		Again	we	must	differenti-
ate	between	order	types	and	put	the	trade	information	into	the	different	columns.		Here	we	do	change	our	
market	position	to	0	or	flat.		In	fact,	if	we	wanted	to	streamline	our	code,	we	could	combine	the	ExitLong
and	Sell	subroutines	into	one	subroutine.		I	made	the	separate	routine	to	mimic	the	subroutine	calls	of	
other	testing	platforms.		The	same	goes	for	the	ExitShort	subroutine.		

The	last	subroutine	that	we	need	to	talk	about	is	CalcTradeResults().		This	subroutine	is	called	from	
each	of	the	four	trade	entry/exit	routines	and	keeps	track	of	the	performance	of	the	trading	system.		The	
only	information	this	routine	needs	to	know	is	the	current	position,	entry	price	and	exit	price.			It	takes	
this	information,	processes	it,	updates	the	global	performance	variables	and	also	returns	the	current	trades	
profit	or	loss	in	the	tradeProf	variable.		TradeProf	is	passed	to	the	subroutine	and	is	modified	and	
passed	back	to	the	calling	program.		All	variables	are	passed	by	reference	to	subroutines	or	functions	in	
Visual	Basic.		This	simply	means	the	values	of	these	variables	can	be	changed	in	the	subroutine	and	these	
changes	are	reflected	in	the	calling	subroutine.		

260A publication of Futures Truth™ Co.

Issue #4/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 2

Sub CalcTradeResults(pos, entryPrice, exitPrice, tradeProf)

 If pos = 0 Then Return ‘Return and make no changes if we are flat

 If pos = 1 Then
 tradeProf = exitPrice - entryPrice - commsn
 Else
 tradeProf = entryPrice - exitPrice - commsn
 End If
 If (tradeProf >= 0) Then
 numWins = numWins + 1
 Else
 numLosses = numLosses + 1
 End If
 totProfit = totProfit + tradeProf

 If (totProfit > maxEquityHigh) Then maxEquityHigh = totProfit
 If (maxEquityHigh - totProfit > maxDD) Then maxDD = maxEquityHigh - totProfit

End Sub

If	we	come	into	this	subroutine	with	a	long	position	we	then	subtract	our	exit	price	from	our	entry	price.		
If	our	exit	is	above	our	entry	we	then	know	we	made	a	profit.		If	we	are	short	we	then	subtract	our	entry	
price	from	our	exit	price,	just	the	opposite	of	what	we	did	for	a	long	trade.		If	our	entry	is	above	the	exit	
then	the	short	trade	was	profitable.		Once	we	calculate	the	trade	profit,	we	then	calculate	the	total	overall	
profit,	number	of	wins,	number	of	losses,	and	maximum	draw	down.			And	that’s	basically	all	there	is	to	
the	System	Tester	program.		You	can	download	the	code	directly	from	Futures	Truth	website	and	start	
playing	around	with	it.		Remember,	to	run	the	program	you	go	under	Tools	in	the	Excel	Menu,	select	
Macros	and	highlight	the	Macro	submenu	and	then	select	RunSystemTester.				You	will	need	to	invoke	
the	Visual	Basic	editor	under	the	tools	menu	to	be	able	to	edit	the	program.		In	the	next	and	last	install-
ment	of	developing	this	system	tester	we	will	incorporate	some	indicators	and	introduce	several	different	
systems	and	improve	on	the	performance	reports.

26�A publication of Futures Truth™ Co.

Issue #5/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 3
Expanding Our Testing Capabilities With Indicators

Now	that	we	have	the	core	testing	engine	programmed	let’s	go	ahead	and	program	a	handful	of	indicators	
into	subroutines	so	we	can	use	them	in	our	testing.		I	got	tired	of	using	the	same	old	data	that	was	used	in	
the	last	two	installments,	so	I	have	populated	the	latest	SystemTester.xls	workbook	with	November	Crude	
Oil	data.		I	only	picked	five	popular	indicators	to	include	in	our	Visual	Basic	code,	but	once	you	see	how	
they	are	programmed	you	should	have	no	problem	adding	more.			

One	of	the	easiest	indicators	to	program	is	the	simple	moving	average	so	we	will	start	with	that	one.			As	
you	know	you	can	calculate	the	moving	average	on	different	prices.		The	most	popular	of	course	is	the	
close.		Since	we	want	to	make	our	indicators	as	flexible	as	possible,	we	should	allow	the	user	to	pass	any	
price	stream	(open,	high,	low	or	close)	
to	our	subroutine	and	return	the	moving	
average	of	whatever	length	they	choose.		
Visual	Basic	is	very	flexible	language	
and	therefore	great	for	the	inexperienced	
programmer.		Take	a	look	at	the	following	code	to	see	how	simple	the	process	is	of	adding	an	indicator	to	
our	program.		

Function	Average(dataList,	length,	index)

Dim	i	As	Integer
Dim	sum,		As	Double

For	i	=	index	-	(length	-	1)	To	index
				sum	=	sum	+	dataList(i)
Next	i
Average	=	sum	/	length

End	Function

Since	we	are	only	need	one	value	passed	back	to	the	calling	subroutine	we	can	simply	use	a	Function.		
Functions	are	similar	to	subroutines	in	that	information	is	passed	back	and	forth	from	the	calling	program	
and	sub	program.		The	main	difference	between	these	two	subprograms	is	in	how	you	invoke	them.		With	
a	subroutine	you	must	use	the	keyword Call prior	to	the	name	of	the	subroutine,	whereas	a	function	is	
accessed	by	simply	using	its	name	as	and	parameter	list.		For	example,	to	use	the	Average	function	we	
would	use	the	following	snippet	of	code:

myAverage	=	Average(myClose,14,i)

Here	we	simply	assign	the	14	day	moving	average	of	closing	prices	to	the	myAverage	variable.		This	

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/SystemTester.xls.

262A publication of Futures Truth™ Co.

was	done	by	using	the	function	name	and	the	parameters	necessary	to	provide	the	information	that	is	
needed.			The	function	header Function	Average(dataList,	length,	index)	provides	the	name	of	
the	function	(Average)	and	the	list	of	arguments	it	needs	to	do	the	moving	average	calculation.		I	used	
the	variable	dataList so	that	different	data	arrays	could	be	passed	to	the	function.		We	could	call	the	
function	with	myClose,	myHigh,	myLow or myOpen	data	arrays.		Somewhere	in	the	body	of	the	
function,	the	name		of	the	function	must	be	used	and	assigned	the	result	of	a	calculation.		In	the	example	
above	we Dim dimension	two	variables i and	sum.		These	are	the	only	two	variables	we	will	need	to	
complete	our	moving	average	calculation.		Since	we	will	need	to	look	back	over	n	days	to	sum	up	the	
prices,	a	for	loop	will	be	used.		The	sum variable	will	act	like	an	accumulator	and	sum	up	the	prices	for	
the	last	n	days.		When	the	loop	terminates	the	sum	will	be	divided	by	the	number	of	days	that	we	have	
looked	back	and	the	quotient	will	be	assigned	to	the	name	of	our	function	-	Average.		Thats	all	there	is	
to	this	simple	indicator.		You	could	use	this	template	to	create	an	exponential	or	weighted	moving	aver-
age	indicator	or	any	other	indicator	that	has	just	one	output.		Here	is	a	little	more	complicated	indicator	
that	can	be	programmed	as	a	function.

Function	RSI(dataList,	length,	index)

Dim	i	As	Integer
Dim	diff1,	diff2,	upSum,	dnSum

upSum	=	0
dnSum	=	0

If	rsiVal1	=	0	And	rsiVal2	=	0	Then					‘seed	the	original	RSI	Value
				For	i	=	index	-	(length	-	1)	To	index
								If	dataList(i)	>	dataList(i	-	1)	Then
												diff1	=	dataList(i)	-	dataList(i	-	1)
												upSum	=	upSum	+	diff1
								End	If
								If	dataList(i)	<	dataList(i	-	1)	Then
												diff2	=	dataList(i	-	1)	-	dataList(i)
												dnSum	=	dnSum	+	diff2
								End	If
				Next	i
				rsiVal1	=	upSum	/	length
				rsiVal2	=	dnSum	/	length
Else
				If	dataList(index)	>	dataList(index	-	1)	Then
								diff1	=	dataList(index)	-	dataList(index	-	1)
								upSum	=	upSum	+	diff1
				End	If
				If	dataList(index)	<	dataList(index	-	1)	Then
								diff2	=	dataList(index	-	1)	-	dataList(index)
								dnSum	=	dnSum	+	diff2
				End	If
				rsiVal1	=	(rsiVal1	*	(length	-	1)	+	upSum)	/	length

Issue #5/2007

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

263A publication of Futures Truth™ Co.

Issue #5/2007

				rsiVal2	=	(rsiVal2	*	(length	-	1)	+	dnSum)	/	length
End	If
If	rsiVal1	+	rsiVal2	<>	0	Then
				RSI	=	(100	*	(rsiVal1))	/	(rsiVal1	+	rsiVal2)
Else
				RSI	=	0
End	If

End	Function

This	RSI	function	is	a	little	more	complicated	because	the	indicator	initially	needs	to	be	calculated	with	
the	use	of	simple	moving	average.		Here	we	once	again	pass	the	data	array	to	the	function	because	the	
RSI	can	be	calculated	on	any	data	stream.		

upSum	=	0
dnSum	=	0

If	rsiVal1	=	0	And	rsiVal2	=	0	Then					‘seed	the	original	RSI	Value
				For	i	=	index	-	(length	-	1)	To	index
								If	dataList(i)	>	dataList(i	-	1)	Then
												diff1	=	dataList(i)	-	dataList(i	-	1)
												upSum	=	upSum	+	diff1
								End	If
								If	dataList(i)	<	dataList(i	-	1)	Then
												diff2	=	dataList(i	-	1)	-	dataList(i)
												dnSum	=	dnSum	+	diff2
								End	If
				Next	i
				rsiVal1	=	upSum	/	length
				rsiVal2	=	dnSum	/	length
Else

rsiVal1	and	rsiVal2	are	global	parameters	(not	local	to	just	this	function)	and	if	they	are	equal	to	zero	
this	must	mean	we	have	entered	this	function	for	the	first	time.		Once	we	change	these	values	they	will	
be	the	same	until	they	are	changed	again.		Just	to	refresh	your	memory	on	the	RSI,	this	indicator	first	av-
erages	the	magnitudes	between	the	positive	and	negative	differences	between	today’s	close	(open,	high,	
low)	and	yesterday’s	close.		These	values	will	be	positive	since	we	are	simply	looking	at	the	magnitudes	
of	the	differences.		The	RSI	is	then	calculated	by	dividing	the	average	magnitude	of	up	closes	by	the	
sum	of	the	average	magnitude	of	up	closes	and	the	average	magnitude	of	down	closes.		This	quotient	
is	then	multiplied	by	100.		This	indicator	oscillates	from	0	to	100.		After	we	initially	calculate	the	RSI	
(seed),	we	then	use	the	last	rsiVal1	and	rsiVal2	to	calculate	the	next	value	of	the	RSI.

		If	dataList(index)	>	dataList(index	-	1)	Then
								diff1	=	dataList(index)	-	dataList(index	-	1)
								upSum	=	upSum	+	diff1
				End	If

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

264A publication of Futures Truth™ Co.

Issue #5/2007

				If	dataList(index)	<	dataList(index	-	1)	Then
								diff2	=	dataList(index	-	1)	-	dataList(index)
								dnSum	=	dnSum	+	diff2
				End	If
				rsiVal1	=	(rsiVal1	*	(length	-	1)	+	upSum)	/	length
				rsiVal2	=	(rsiVal2	*	(length	-	1)	+	dnSum)	/	length

First	we	calculate	the	most	recent	up	or	down	close	and	then	use	a	simplified	moving	average	calculation	to	
come	up	with	the	most	recent	RSI	value.		We	take	the	last	value	of	rsiVal1 and	multiply	it	my	length	-1	
and	then	add	the	upSum and	then	divide	this	result	by	the	length.		This	was	Welles	Wilder’s	shortcut	for	
calculating	averages	before	the	computer	era.		RsiVal1	and	rsiVal2 keep	their	values	inside	and	outside	
the	RSI	function	because	they	were	declared	globally.		Hence	we	can	count	on	them	having	their	last	values	
inside	our	function.		Some	times	indicators	can	be	more	complex	and	require	more	than	just	one	value	to	be	
calculated.		The	Bollinger	Band	indicator	is	one	that	outputs	two	or	three	different	values.		The	Bollinger	
Band	indicator	calculates	a	moving	average	and	one	band	above	and	one	band	below	the	average.		The	
distance	between	the	bands	and	the	average	is	based	on	the		user	defined	multiple	of	the	standard	deviation	
of	the	moving	average.		Most	traders	like	to	see	one	or	two	standard	deviations	above/below	the	moving	
average	line.		These	bands	signify	either	support	or	resistance.		

Sub	BollingerBand(dataList,	length,	numDevs,	avg,	upBand,	dnBand,	index)

Dim	i	As	Integer
Dim	sum,	sum1,	myDev	As	Double

For	i	=	index	-	(length	-	1)	To	index

				sum	=	sum	+	dataList(i)
				sum1	=	sum1	+	dataList(i)	^	2

Next	i

avg	=	sum	/	length

myDev	=	((length	*	sum1	-	sum	^	2)	/	(length	*	(length	-	1)))	^	0.5

upBand	=	avg	+	myDev	*	numDevs
dnBand	=	avg	-	myDev	*	numDevs

End	Sub

Here	we	use	a	subroutine	instead	of	a	function.		We	will	want	three	outputs	from	this	subroutine:	avg,	
upBand	and	dnBand.		The	subroutine	will	need	to	know	the	price	stream,	the	number	of	bars	to	look	back	
and	the	number	of	standard	deviations.		This	subroutine	uses	a	for	loop	to	calculate	the	sum	of	prices,	and	
the	sum	of	the	prices	squared.		Again	we	could	be	using	the	open,	high,	low	or	close	data	stream	in	this	
loop.		The	myDev variable	is	assigned	the	standard	deviation	calculation	based	on	the	length	or	sample	
size	of	the	data.		Once	this	variable	is	changed	it	stays	that	way	until	it	is	changed	again,	so	we	can	access	

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

265A publication of Futures Truth™ Co.

Issue #5/2007

the	value	in	our	main	loop.		Just	for	a	little	more	practice	in	coding	these	indicators	the	Stochastic	pro-
gramming	is	also	included	in	the	workbook.

If	you	run	the	SystemTesterV1.2	module,	the	values	of	these	indicators	are	printed	out	in	columns	8	
through	14	on	“Sheet1”.		This	was	accomplished	by	this	following	code:

 	Sheets(“Sheet1”).Select					‘Select	Sheet1	to	access	the	data
				Cells(i	+	baseRow,	8)	=	upBand
				Cells(i	+	baseRow,	9)	=	dnBand
				Cells(i	+	baseRow,	10)	=	simpleAvg	
				Cells(i	+	baseRow,	11)	=	rsiVal
				Cells(i	+	baseRow,	12)	=	stoK
				Cells(i	+	baseRow,	13)	=	stoD

				Cells(i	+	baseRow,	14)	=	slowD

A	simple	Bollinger	Band	system	was	programmed	to	demonstrate	the	use	of	these	indicators.	

 If	myClose(i)	>	upBand	Then	Call	Buy(“Go-Long”,	myClose(i),	mkt,	i)
				 If	myClose(i)	<	dnBand	Then	Call	Sell(“Go-Short”,	myClose(i),	mkt,	i)
				 if	myClose(i)	<	avg	Then	Call	ExitLong(“LongLiq”,myClose(i),mkt,i)
	 if	myClose(i)	>	avg	Then	Call	ExitShort(“ShortLiq”,myClose(i),mkt,i)

If	the	close	of	the	day	is	above	the	top	Bollinger	band	then	we	enter	the	market	on	the	close.		I	had	to	
change	a	little	bit	of	code	to	allow	market	orders	to	be	executed	on	the	close	of	the	day.		This	change	has	
been	reflected	in	latest	version	of	the	SystemTester.		If	the	close	of	the	day	is	less	than	the	bottom	Bol-
linger	then	we	enter	the	market	on	the	close.		If	we	do	get	into	a	long	position	and	the	market	then	retraces	
back	and	closes	below	the	moving	average	we	then	exit	our	long	position.		The	same	works	for	short	posi-
tions.		We	exit	short	when	the	market	moves	back	up	through	the	moving	average.

In	the	next	installment,	we	will	add	the	ability	to	have	multiple	sheets	of	data	and	have	the	program	test	all	
of	them	in	one	run.		As	usual,	just	go	to	our	website	to	download	SystemTesterV1.2.xls.

If you have any questions on this article or code it contains,
feel free to contact George directly at GPruitt@FuturesTruth.com.

Making Visual Basic For Excel Test Your Trading Ideas - Part 3

266A publication of Futures Truth™ Co.

Issue #1/2008

Making Visual Basic For Excel Test Your Trading Ideas - Part 4
Putting the Thermostat System Into Our

Visual Basic Testing Platform

I developed the Thermostat system back �n 200� and publ�shed �t �n Building Winning Trading Systems
with TradeStation. This system is a combination of two systems: a short term swing system and a trend
follower. The trend follow�ng mechan�sm �s s�mply a 2 standard dev�at�on break out (Boll�nger Band) of
a 50 day mov�ng average. The sw�ng system �s a s�mple open range breakout. What makes th�s system
d�fferent than others �s �ts ab�l�ty to sw�tch from one system to the other. The funct�on that causes the sys-
tem to sw�tch modes �s the Choppy Market Index. Th�s �ndex tells us what mode the market �s currently
exhibiting: choppy or trending. This formula is quite simple – we divide the actual distance the market
has traveled for the past th�rty days by the d�stance that market has wandered for the past th�rty days.

Choppy	Market	Index	=	ABS(Close	–	Close(29))/(Highest(High,30)-Lowest(Low,30))	*	100

If the distance between today’s close and the close of 30 days ago is less than 20% of the distance between
the h�ghest h�gh and the lowest low of the past 30 days then I feel the market �s demonstrat�ng a sw�ng�ng
mot�on. On the other hand �f the market has resulted �n a ga�n or loss of 20% or more of the h�ghest h�gh
– lowest low range, then I feel the market �s �n a trend mode. If you want to s�mply work w�th dec�mals
you can el�m�nate the �00 mult�pl�er. Th�s I have done �n the trad�ng log�c.

If the Choppy Market Index (CMI) �s less than 20%, then we w�ll ut�l�ze the open range break out
(ORBO) mechan�sm. The ORBO also �ncorporates pattern recogn�t�on. Wh�le �n choppy mode we can
have either a buy easier or sell easier day. These types of days are determined by comparing today’s clos-
ing price to the key of the day (KOD). The KOD or day trader’s pivot point is calculated by simply divid-
ing the sum of today’s high, low, and close by three (H + L + C)/3. If the close is above the KOD then
we have a sell eas�er day (SAD). In other words the market closed nearer �ts h�gh and we are expect�ng
a down day tomorrow. If the close �s below or equal to the KOD, then we have a buy eas�er day (BAD).
These patterns are pretty self explanatory. On BAD days we w�ll make �t eas�er to buy than sell and, on
SAD days sells will be easier than buys. On BAD days we will buy at the open + 50% of the ten day
average true range (�0ATR) and sell short at the open – 75% of �0ATR. On SAD days we w�ll just do the
opposite – buy at the open + 75% of the 10ATR and sell short at the open – 50% of the 10ATR. The weak-
ness w�th break out systems �s that they somet�mes get wh�psawed �n extremely choppy markets. I tr�ed to
prevent th�s by ut�l�z�ng a Trend Lock Po�nt (TLP). Many t�mes we w�ll have a gap down that cont�nue a
down trend and then the market attempts to fill the gap. A pure break out system will be tempted to buy as
the market moves up off of the open even though the market �s st�ll show�ng weakness. The TLP attempts
to keep the system �n synch w�th the current short term trend. If the buy entry stop �s below the three day
average of low pr�ces, I move the buy stop up to th�s po�nt. If the sell stop �s above the three day average
of high prices, I move the sell stop down to this point. In other words:

	 	 BuyStop	=	MAX(BuyStop,Average(Low,3))

	 	 SellStop	=	MIN(SellStop,Average(High,3))

If a pos�t�on �s �n�t�ated a three �0ATR protect�ve stop �s �nvoked. Th�s stop �s rarely h�t.

267A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

If the CMI determ�nes that we are �n a trend�ng market, then the system sw�tches to the 50-day Boll�nger
break out. Long pos�t�ons are �n�t�ated at the upper Boll�nger band and short pos�t�ons are put on when the
market moves past the lower Boll�nger band. Wh�le we are �n a trend�ng market the three �0ATR stop �s
not ut�l�zed. L�qu�dat�ons of pos�t�ons take place at the 50-day mov�ng average. If we enter a long pos�-
t�on at the upper Boll�nger band, we then w�ll l�qu�date once the market moves down past the 50-day mov-
�ng average. Short pos�t�ons are l�qu�dated when the market moves above the 50-day mov�ng average.

That’s all there is to this system. Since release the system has been very successful even though it did
surpass �ts worse draw down �n late 2006. I thought th�s would be a good system to use as a tutor�al for
programm�ng �n our system tester software.

I have updated the SystemTester to vers�on �.3. The new vers�on �ncludes the H�ghest/Lowest funct�ons
and I have d�v�ded the program �nto d�fferent areas by us�ng comments. You now know where to declare
your var�ables and put your system log�c. You can download the ThermostatTest Excel spreadsheet from
our webs�te.

Now that we know how the system works, let’s see how easy it is to program into our SystemTester. I will
only �nclude the necessary log�c for the system to help reduce space. F�rst off we w�ll declare the neces-
sary var�ables that we w�ll need for Thermostat.

Dim	cmiVal	As	Double
Dim	hh,	ll,	trendLokBuy,	trendLokSell,	swingBuyPt,	swingSellPt,	trendBuyPt,	trendSellPt	As	Integer
Dim	choppyPer1,	choppyPer2,	keyOfDay,	protStopAmt	As	Double
Dim	buyEasierDay,	sellEasierDay,	bollAvg	As	Integer

Many times I don’t know ahead of time what variables I will need so I make them up as I go along. You
w�ll not�ce that I have d�mens�oned some of my var�ables as Integers and some as Doubles. If I need a
var�able to have a fract�onal part, I w�ll declare �t as a Double. If I need a toggle, l�ke the buyEasierday or
sellEasierDay or an entry/ex�t pr�ce I w�ll usually d�mens�on as an Integer. You could d�mens�on every-
th�ng as Double �f you l�ke.

After the declarat�on (d�mens�on�ng) of the var�ables we move �nto the ma�n trad�ng loop and do the nec-
essary calculat�ons for the Choppy Market Index (CMI).

choppyPer1	=	0.5
		 choppyPer2	=	0.75

					 hh	=	Highest(myHigh,	30,	0,	i)
				 	ll	=	Lowest(myLow,	30,	0,	i)

					 cmiVal	=	Abs(myClose(i	-	29)	-	myClose(i))	/	(hh	-	ll)

Here we assign 0.5 and 0.75 to the first and second choppy percentage variables. We then invoke the
H�ghest and Lowest funct�ons to determ�ne the h�ghest h�gh and lowest low values for the past 30 days.

268A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

 The cmiVal is calculated by dividing the absolute value of the close 30 days ago minus today’s close by
the d�fference between the h�ghest h�gh and the lowest low for the past th�rty days.

trendLokBuy	=	Average(myLow,	3,	i)
				 	trendLokSell	=	Average(myHigh,	3,	i)

					 buyEasierDay	=	0
					 sellEasierDay	=	0

				 	keyOfDay	=	(myClose(i)	+	myHigh(i)	+	myLow(i))	/	3

				 	If	(myClose(i)	>	keyOfDay)	Then	sellEasierDay	=	1
				 	If	(myClose(i)	<=	keyOfDay)	Then	buyEasierDay	=	1

Th�s sn�ppet of code calculates the trendLokBuy and trendLokSell	points. These values are determ�ned
by call�ng the Average funct�on us�ng the myLow and myHigh data arrays. The next value to be calcu-
lated is the Key of the Day. This is calculated by dividing the sum of the day’s high, low and close by
three. We use th�s value to determ�ne �f the next day �s go�ng to be a buyEasierDay or a sellEasierDay. If
today’s close is greater than the Key of the Day, then we will setup for a sellEasierDay tomorrow. Con-
versely, �f the market closes at or below the Key of the Day, then we w�ll set up for a buyEasierDay.

If	(buyEasierDay	=	1)	Then
									 	 swingBuyPt	=	myOpen(i	+	1)	+	Average(myTrueRange,	10,	i)	*	choppyPer1
									 	 swingSellPt	=	myOpen(i	+	1)	-	Average(myTrueRange,	10,	i)	*	choppyPer2
				 End	If
					 If	(sellEasierDay	=	1)	Then
								 		 swingBuyPt	=	myOpen(i	+	1)	+	Average(myTrueRange,	10,	i)	*	choppyPer2
									 	 swingSellPt	=	myOpen(i	+	1)	-	Average(myTrueRange,	10,	i)	*	choppyPer1
					 End	If

The buyEas�er/sellEas�er day only appl�es to the short term sw�ng system so we can go ahead and calcu-
late the sw�ngBuy/sw�ngSell po�nts once we determ�ne what type of day has set up. If we have a bu-
yEasierDay, then the buy stop w�ll be the Open of tomorrow plus 50% of the ten day average true range.
The sell stop w�ll be calculated s�m�larly but we w�ll subtract 75% of the ten day average true range. The
buy and sell stops are calculated in the same manner on sellEasierDays; we simply flip the 50% and 75%.

Call	BollingerBand(myClose,	50,	2,	bollAvg,	trendBuyPt,	trendSellPt,	i)

				 	If	(cmiVal	<	0.2)	Then
								 	 	If	marketPosition	<>	1	Then	Call	Buy(“SwingBuy”,	swingBuyPt,	stp,	i)
								 	 	If	marketPosition	<>	-1	Then	Call	Sell(“SwingSell”,	swingSellPt,	stp,	i)
 Else

									 	 If	marketPosition	<>	1	Then	Call	Buy(“TrendBuy”,	trendBuyPt,	stp,	i
	If	marketPosition	<>	-1	Then	Call	Sell(“TrendSell”,	trendSellPt,	stp,	i)

					 End	If	

269A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

Once we calculate the Boll�nger Bands we can then start to place the orders. The Boll�ngerBand subrou-
t�ne ass�gns the upper band to the trendBuyPt and the lower band to the trendSellPt. So, we now have our
trendBuy, trendSell,	swingBuy, and swingSell price points. All we need to do now is figure out which
ones of these needs to be placed. We only place the sw�ng stop orders �n choppy market mode and th�s
occurs when the cmiVal drops below 0.2. If the cmiVal �s greater than or equal to 20% we then place the
trend�ng stop orders.

After the entry orders are placed we need to place our protect�ve stops.

protStopAmt	=	3	*	Average(myTrueRange,	10,	i)
				 	If	marketPosition	=	1	Then
													 If	signalName	=	“TrendBuy”	Then	Call	ExitLong(“TrendLongEx”,	bollAvg,	stp,	i)
												 If	signalName	=	“SwingBuy”	Then	Call	ExitLong(“SwingLongEx”,	entryPrice	-	protS-
topAmt,	stp,	i)
					 End	If

					 If	marketPositon	=	-1	Then
													 If	signalName	=	“TrendSell”	Then	Call	ExitShort(“TrendShortEx”,	bollAvg,	stp,	i)
												 If	signalName	=	“SwingSell”	Then	Call	ExitShort(“SwingShortEx”,	entryPrice	+	
protStopAmt,	stp,	i)
					 End	If

Not�ce how we t�ed our ex�t s�gnals w�th our entry s�gnals. If we have a long pos�t�on and the s�gnal name
that put us �nto that trade �s a “TrendBuy” then we only ex�t w�th the “TrendLongEx” s�gnal. The “Sw�ng-
Buy/Sell” entr�es are t�ed to the “Sw�ngLong/ShortEx” s�gnals.

I have �ncluded two years of cont�nuous crude o�l �n th�s spreadsheet that you can test on. Please play
around w�th the log�c and plug �n your own system and see �f you can come up w�th a good system. Two
things that I want to change in the next revision, which will increase accuracy, are:

�.) Create a subrout�ne that determ�nes wh�ch order �s closest to the market and execute only that one.
Right now the system looks at the entries first and if the order is hit it will automatically execute, even
though the l�qu�dat�on order m�ght be closer.

2.) Allow mult�ple entr�es on the same bar �f we can determ�ne w�th a h�gh level of accuracy wh�ch oc-
curred first – the high or the low of the bar.

Also, here are the codes for the Highest and Lowest functions:

Function	Highest(dataList,	length,	offset,	index)
Dim	i	As	Integer
Dim	tempHH	As	Integer

					 tempHH	=	0
					 For	i	=	index	-	(length	-	1	+	offset)	To	index
									 	 If	(dataList(i)	>	tempHH)	Then	tempHH	=	myHigh(i)
				 	Next	i
					 Highest	=	tempHH

270A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

End	Function

Function	Lowest(dataList,	length,	offset,	index)
Dim	i	As	Integer
Dim	tempLL	As	Double

				 	tempLL	=	999999
					 For	i	=	index	-	(length	-	1	+	offset)	To	index
									 	 If	(dataList(i)	<	tempLL)	Then	tempLL	=	myLow(i)
			 	Next	i
				 	Lowest	=	tempLL

End	Function

I will repeat the core logic of the Thermostat system so that you won’t need to extract it from the Visual
Bas�c code. Here �t �s �n �ts ent�rety. I would make sure you fully grasped th�s before tweak�ng or pro-
gramm�ng your own system.

Do	While	i	<	numRecords

				i	=	i	+	1

				choppyPer1	=	0.5
				choppyPer2	=	0.75

				hh	=	Highest(myHigh,	30,	0,	i)
				ll	=	Lowest(myLow,	30,	0,	i)

				cmiVal	=	Abs(myClose(i	-	29)	-	myClose(i))	/	(hh	-	ll)

				trendLokBuy	=	Average(myLow,	3,	i)
				trendLokSell	=	Average(myHigh,	3,	i)

				buyEasierDay	=	0
				sellEasierDay	=	0

				keyOfDay	=	(myClose(i)	+	myHigh(i)	+	myLow(i))	/	3

				If	(myClose(i)	>	keyOfDay)	Then	sellEasierDay	=	1
				If	(myClose(i)	<=	keyOfDay)	Then	buyEasierDay	=	1

				If	(buyEasierDay	=	1)	Then
								swingBuyPt	=	myOpen(i	+	1)	+	Average(myTrueRange,	10,	i)	*	choppyPer1
								swingSellPt	=	myOpen(i	+	1)	-	Average(myTrueRange,	10,	i)	*	choppyPer2
				End	If
				If	(sellEasierDay	=	1)	Then
								swingBuyPt	=	myOpen(i	+	1)	+	Average(myTrueRange,	10,	i)	*	choppyPer2
								swingSellPt	=	myOpen(i	+	1)	-	Average(myTrueRange,	10,	i)	*	choppyPer1
				End	If

27�A publication of Futures Truth™ Co.

Making Visual Basic For Excel Test Your Trading Ideas - Part 4

Issue #1/2008

				Call	BollingerBand(myClose,	50,	2,	bollAvg,	trendBuyPt,	trendSellPt,	i)

				If	(cmiVal	<	0.2)	Then
								If	marketPosition	<>	1	Then	Call	Buy(“SwingBuy”,	swingBuyPt,	stp,	i)
								If	marketPosition	<>	-1	Then	Call	Sell(“SwingSell”,	swingSellPt,	stp,	i)
 Else

								If	marketPosition	<>	1	Then	Call	Buy(“TrendBuy”,	trendBuyPt,	stp,	i)
								If	marketPosition	<>	-1	Then	Call	Sell(“TrendSell”,	trendSellPt,	stp,	i)

				End	If

				protStopAmt	=	3	*	Average(myTrueRange,	10,	i)
				If	marketPosition	=	1	Then
												If	signalName	=	“TrendBuy”	Then	Call	ExitLong(“TrendLongEx”,	bollAvg,	stp,	i)
												If	signalName	=	“SwingBuy”	Then	Call	ExitLong(“SwingLongEx”,	entryPrice	-	protSto-
pAmt,	stp,	i)
				End	If

				If	marketPositon	=	-1	Then
												If	signalName	=	“TrendSell”	Then	Call	ExitShort(“TrendShortEx”,	bollAvg,	stp,	i)
												If	signalName	=	“SwingSell”	Then	Call	ExitShort(“SwingShortEx”,	entryPrice	+	protSto-
pAmt,	stp,	i)
				End	If

‘----------	End	of	System	Logic	-	Do	Not	Change	Next	2	lines	-----------

				If	(totProfit	>	maxEquityHigh)	Then	maxEquityHigh	=	totProfit
				If	(maxEquityHigh	-	totProfit	>	maxDD)	Then	maxDD	=	maxEquityHigh	-	totProfit

‘--

Loop

Download the code used in George’s Corner at
ftp://www.FuturesTruth.com/pub/Thermostat.xls.

If you have any questions on this article or code it contains,
feel free to contact George directly at George@FuturesTruth.com.

272A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Could’ve , Would’ve , Should’ve . . .

Long s�de only commod�ty trad�ng has been the hot top�c for a few years now. J�m Rogers book of a few
years ago, Hot Commodities, e�ther got th�s ball roll�ng or helped �t along cons�derably. Many profess�on-
al money managers offer th�s type of product to the�r cl�ents and even though they may have gone through
some draw down, the end result (espec�ally for the past few months) has been qu�te good. I wanted to
see what the results of th�s type of trad�ng would look l�ke over the past 22 years so I used the Aberrat�on
system as my gu�nea p�g. I forced the system to just take the long s�gnals and sk�p the shorts. Long trades
were l�qu�dated at the�r normal ex�ts. The follow�ng table shows performance from the long s�de only on
twelve d�fferent commod�ty markets.

 Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
Crude Oil 45830 2075 31780 10680 12120 4 52.3 46 1.5 5.9
Heating Oil 76390 3459 23906 12466 12818 4 53.7 43 1.9 13.3
Natural Gas 84530 4762 34940 -4730 6300 4 43.8 36 1.7 11.6
Soybeans 22795 1032 38395 14095 6915 3 41.3 33 1.3 2.6
Wheat 75 3 18013 7350 14725 2 39.2 26 1.0 0.0
Cotton 31315 1418 18485 -5175 7630 3 42.4 28 1.7 7.3
Rough Rice -10000 -511 23274 5174 1160 3 37.9 27 .8 -2.0
Corn 10863 492 12863 4075 3450 3 39.0 29 1.4 3.7
Sugar 6978 316 8434 2184 1142 3 45.0 33 1.2 3.5
Copper 66238 2999 22813 -5238 17063 3 43.4 38 2.1 12.0
Pork Bellies -9048 -410 25220 -1860 3840 3 37.1 28 .9 -1.5
Live Cattle 5360 243 12412 -2112 4760 5 41.0 42 1.1 1.9
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 21051 37216 on 20080123 26 100 8881 76.5
Last 12 Months 35119 37216 on 20080123 41 100 7216 63.8
Average / Year 14984 26195 Avg. Hi 22 38 95 7555 31.5
Full Run TOTAL 330907 72526 on 20050721 834 95 7555 16.0

The results look great except for the max�mum draw down. What �f we s�mply bought and held the com-
mod�t�es for th�s same t�me per�od? Would the old buy and hold out perform the long only Aberrat�on
approach? The next table holds the answer.

 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
Crude Oil 77510 3510 34700 27660 12120 6 54.9 100 1.5 9.2
Heating Oil 73626 3334 59816 33852 13327 6 54.1 100 1.4 5.4
Natural Gas -28890 -1628 167600 -16460 37640 6 47.7 100 .9 -.9
Soybeans 17810 806 48195 23845 6600 6 49.6 100 1.1 1.6

273A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Wheat -3875 -175 44563 16675 10225 5 43.2 100 1.0 -.4
Cotton -7190 -326 66895 955 5815 5 47.7 100 1.0 -.5
Rough Rice -30710 -1568 38650 4534 2810 6 38.1 100 .7 -3.9
Corn -19950 -903 31738 1925 7963 5 38.7 100 .7 -2.8
Sugar 2184 99 13978 157 3024 4 49.4 100 1.0 .7
Copper 95388 4319 35475 1000 22738 5 55.9 100 1.9 11.5
Pork Bellies 6464 293 49304 -5232 12628 5 46.8 100 1.0 .6
Live Cattle 23004 1042 14892 -4332 8140 6 55.6 100 1.3 6.8
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+
Last 6 Months 60426 38586 on 20080123 37 100 22945 196.4
Last 12 Months 96059 40402 on 20070821 74 100 22945 151.6
Average / Year 9270 45903 Avg. Hi 22 63 100 21525 13.5
Full Run TOTAL 204710 198067 on 20070111 1401 100 21525 4.2
———

Buy and hold not only made less money but �t almost tr�pled the max�mum draw down. Aga�n, a system-
at�c approach out performs the s�mple buy and hold. A calculated protect�ve stop must be bu�lt �n to the
system to help w�th the large retracements that occur �n the commod�ty markets.

Continuous Versus Individual Contract Data

Recently wh�le do�ng some test�ng on d�fferent trad�ng approaches, I not�ced d�fferences �n performance
numbers when us�ng cont�nuous data versus �nd�v�dual contract data. I used the exact system on the two
data formats and observed cons�derable d�fferences. When you place a trade you place �t �n the actual
market, so you would th�nk test�ng on actual data would be the most accurate. In some cases th�s �s true.
However, there are two important elements that make this difficult if not impossible. The first problem
with back testing on actual contract data is that today’s popular software can’t handle the data manage-
ment of roll�ng from one contract to another. The software would have to trade, for example, the March
contract up unt�l the rollover date, ex�t the pos�t�on, unload the March contract, load the June contract,
calculate �nd�cators/patterns on the new June contract and then �n�t�ate the pos�t�on �n the new contract.
The software could potent�ally do th�s twelve t�mes a year (energ�es trade every month). The software
would also have to keep track of the P/L and the draw down from these rollover trades. Our own Excal�-
bur software somewhat does just th�s. The l�m�tat�on of Excal�bur �s that �t forces rollovers on the last
day of the month pr�or to the exp�rat�on month and many t�mes th�s �s not the r�ght t�me to rollover. The
stock �nd�ces cont�nue trad�ng the old contract for a week or more �n the exp�r�ng month. So �t turns out
Excal�bur �s trad�ng a contract that �s not yet the top step for a week or so. In a perfect world w�th perfect
software, rollovers would occur based on volume and open �nterest and not a stat�c date. Th�s type of data
management wouldn’t be that difficult to program and why it hasn’t yet been done is a mystery to me. We
have the data for all of the contracts so why can’t a program just simply preprocess the data and create a
database of front month contracts and keep track of the rollover data for each one. Maybe one day some-
one w�ll do th�s at the reta�l level, because I am sure large and wealthy CTAs have th�s type of software at
the�r d�sposal.

The second problem occurs because there �s very l�ttle overlap data between the exp�r�ng and new con-
tract. In the example above I outl�ned how software would unload the old contract data, load the new con-
tract data and recalculate the trade signals/indicators on the new data. Let’s say you are using a 200-day
mov�ng average and you load the new contract data �nto memory to do your calculat�on, you w�ll

274A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

notice rather quickly that there isn’t 200 days worth of data to do your calculations. The new contract
s�mply does not have that large amount of data because no one traded that far back �n t�me. And �f there
�s data go�ng that far back, �t probably �s very th�n and �s not a good representat�on of how that part�cular
market had been trad�ng. So we would need to add one more job to our dream software; after unload�ng
the March contract and load�ng the June contract, we would need to create a synthet�c cont�nuous contract
go�ng back as far as necessary based off the last few contracts of data so we could calculate the s�gnals/�n-
d�cators. In other words, the software would bu�ld cont�nuous data dynam�cally all the wh�le trad�ng the
actual contract data. Th�s may sound h�ghly complex, but �t could st�ll be done.

Or we could just s�mply use synthet�c data for the ent�re test per�od and �gnore rollovers altogether. Th�s
�s what 90% or more of system testers do. They understand that the�r results may not exactly match what
would have occurred, but at least they can develop an expectat�on of performance.

I tested two systems on continuous and actual contract data. The first system was a simple 20-day Don-
chian break out – pure stop and reverse. The second system was a little more complex: buy orders were
placed at 20% of the 10-day ATR above the open when the market closed below its previous day’s close
but above the close three days pr�or and sell orders were place 20% of the �0-day ATR below the open
when the market closed above its previous day’s close but below the close three days prior. The two sys-
tems are symmetr�c; buy orders are just the oppos�te of the sell orders. The second system �s also a pure
stop and reverse.

The follow�ng table shows the performance of the Donch�an system. Ind�v�dual contract data was used �n
the first test and continuous in the second.

Individual Test
 Total Avg Max in Last 12mn Trds %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds 49050 2221 26050 5450 9420 11 41.7 100 1.2 7.7
Euro Curr-DM 124688 5668 49025 9975 7638 11 42.3 100 1.4 11.0
Cotton 19740 894 36250 5085 3680 13 36.2 100 1.1 2.4
Japanese Yen 92925 4208 35163 9300 7788 11 43.8 100 1.3 11.3
Soybeans 2250 102 30950 9285 13790 14 38.8 100 1.0 .3
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 20520 15765 on 20080110 32 100 9710 161.1
Last 12 Months 32650 15765 on 20080110 62 100 9710 128.2
Average / Year 13071 25235 Avg. Hi 22 60 100 9707 37.4
Full Run TOTAL 288648 62772 on 19941114 1323 100 9707 18.0
———

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K 46220 2093 23340 5260 9610 7 39.5 100 1.3 8.0
Euro Curr K 136725 6409 49988 8825 10075 7 43.0 100 1.5 12.2
Cotton K 45715 2070 25000 6635 3625 7 37.9 100 1.3 8.0
Japanese K 93888 4252 33150 9613 7750 7 39.9 100 1.4 12.0
Soybeans K -1050 -48 31830 9910 13125 8 35.3 100 1.0 -.1

275A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd Mr+DD
Last 6 Months 19650 18220 on 20080110 21 100 9710 140.7
Last 12 Months 33863 18220 on 20080110 37 100 9710 121.2
Average / Year 14558 25040 Avg. Hi 22 36 100 9709 41.9
Full Run TOTAL 321498 65835 on 19941114 802 100 9709 19.3
———

The results are not that d�ss�m�lar and the d�fferences can be attr�buted to the execut�on costs assoc�ated
with rollovers. The system rolled 506 times and at a cost of $75 that would equal to $37,950 and that is
pretty darn close to the d�fference �n the results.

Now for the short term Open Range Break Out w�th Pattern Recogn�t�on system.

Individual Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds -13860 -628 97340 11490 8960 29 45.0 100 1.0 -.6
Euro Curr-DM -40613 -1846 74800 -11325 24788 30 43.1 100 .9 -2.4
Cotton 169330 7668 9235 9715 3815 30 47.2 100 1.8 74.9
Japanese Yen 28250 1279 50150 -12913 18300 29 45.4 100 1.1 2.4
Soybeans -35 -2 32095 7610 11580 33 39.8 100 1.0 0.0
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months -27305 40005 on 20080124 81 100 9710 -109.8
Last 12 Months 3400 40005 on 20080124 139 100 9710 6.8
Average / Year 6479 21941 Avg. Hi 22 150 100 9702 20.5
Full Run TOTAL 143073 59722 on 20010509 3302 100 9702 9.3

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K -21050 -953 86680 8390 8630 24 42.6 100 .9 -1.1
Euro Curr K -59750 -2801 89488 -12813 27000 26 43.6 100 .9 -3.0
Cotton K 72155 3267 16625 7295 3765 26 45.8 100 1.3 18.5
Japanese K 26988 1222 46513 -7825 12863 25 44.1 100 1.1 2.5
Soybeans K -63290 -2866 88730 6260 8640 29 36.6 100 .8 -3.2
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months -16120 45093 on 20080129 66 100 9710 -58.8
Last 12 Months -533 46838 on 20070212 116 100 9710 -.9
Average / Year -2036 11136 Avg. Hi 22 129 100 9700 -9.8
Full Run TOTAL -44953 130731 on 20030819 2840 100 9700 -1.4
———

As you can see from the results the difference cannot be simply attributed to rollover costs. The finan-
c�als and currenc�es are reasonably (term used loosely) close, but the cotton and beans are way off. The
smooth�ng process that �s used to create cont�nuous contracts undoubtedly has an effect on the relat�on-
sh�ps of recent clos�ng pr�ces and potent�ally on the range of pr�ces themselves. We can see �f the smooth

276A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

�ng process has affected the ranges by s�mply el�m�nat�ng the pattern from our test. The follow�ng tables
reflect a simple 20% ATR Open Range Break Out test.

Individual Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds 1322620 59892 3170 60600 1250 125 67.8 100 6.1 1020.3
Euro Curr-DM 1388450 63111 9625 47650 4888 128 62.0 100 3.3 520.5
Cotton 927860 42016 3535 31370 2520 127 64.1 100 5.5 926.5
Japanese Yen 765825 34679 10413 33625 4025 121 57.1 100 2.3 275.8
Soybeans 677730 30690 6275 50245 3240 133 62.5 100 3.8 402.5
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 129030 2855 on 20080108 306 100 9710 2053.8
Last 12 Months 221155 2855 on 20080108 626 100 9710 1760.1
Average / Year 230150 5416 Avg. Hi 22 634 100 9710 1521.6
Full Run TOTAL 5082480 8157 on 19990216 14001 100 9710 1288.1
———

Continuous Test
 Total Avg Max in Last 12mn Trds % %Gain
 $PL $PL/Yr DrawDn $PL DrawDn /Yr %Wins TIM W:L /Mr+DD
US Bonds K 1148450 52005 2680 56560 1550 122 67.3 100 5.8 966.6
Euro Curr K 1312138 61506 21825 40225 4738 124 61.8 100 3.2 252.9
Cotton K 759615 34398 3370 29705 2750 124 64.0 100 4.6 787.1
Japanese K 759963 34413 12150 29875 4425 118 56.6 100 2.4 240.5
Soybeans K 657945 29794 5585 53915 3080 128 61.8 100 3.7 429.6
———
 Net Max # of % Avg.Mrgn %Gain
 $PL DrawDn Date Trades TIM Reqd /Mr+DD
Last 6 Months 130940 2778 on 20070809 303 100 9710 2097.1
Last 12 Months 207973 2778 on 20070809 613 100 9710 1665.4
Average / Year 210028 6593 Avg. Hi 22 611 100 9710 1288.3
Full Run TOTAL 4638110 19377 on 20001002 13498 100 9710 722.1
———

Wa�t! Before you get carr�ed away w�th the results I need to qual�fy th�s test. To do an accurate test I had
to cheat a little bit. This open range break out system only buys today when today’s close is above the
open and only sells when today’s close is lower than the open. I am looking at today’s close before tak-
�ng act�on today, wh�ch �s �mposs�ble. By do�ng th�s I force the system to only have one trade a day and
the systems should be buy�ng and sell�ng on the exact same days. The number of trades �s almost the
same once rollovers are om�tted. The numbers are very close except for the Eurocurrency max�mum draw
down. Th�s can be expla�ned due to the fact that the data before �999 �s d�fferent for the cont�nuous data
than �t �s for the �nd�v�dual contract. The cont�nuous data pr�or to �999 �s the old euro currency (before
�t replaced the Deutsche mark) and the �nd�v�dual contract data �s the old Deutsche mark mult�pl�ed by a
certa�n constant. The smooth�ng process had very l�ttle �mpact on the actual ranges of the data and the
relationship between the today’s opening and closing prices. This leads us to believe that the difference
occurs �n the relat�onsh�ps of the clos�ng pr�ces over the past few days. The smooth�ng process keeps the
current days open, high, low and close relationship intact, but seems to change the relationship of today’s
pr�ce act�on w�th pr�or days.

277A publication of Futures Truth™ Co.

Issue #2/2008

Miscellaneous Ramblings

Latest Version of the System Tester

I made just one modification to the System Tester software. I created a subroutine to check to see which
order should be executed first. Right now the software would execute whichever order was placed first. It
wasn’t smart enough to check to see if a reversal order would occur prior to say a liquidation order. Just
go to the webs�te to download the latest vers�on.

Download the System Tester code at
ftp://www.FuturesTruth.com/pub/SystemTester1.3.xls

If you have any questions on this article or code it contains, feel free to contact
George directly at George@FuturesTruth.com.

SystemTesterManual Wed, May 7, 2008 1

Before you proceed make sure you have read the first part of the
manual so that you will understand the evolution of the
SystemTester software. In addition, you will gain much insight
into how to properly use the software.

Think of testing a system as one big loop where we are looping
through each day of historical data and taking action when
our trade criteria is met.

Keep in mind that this is not a high priced finished product like
TradersStudio or TradeStation. Expect to get your hands dirty
playing around with the code. The development of this software
was designed to be educational. With a little bit of elbow grease
you can test and evaluate your own trading systems.

Here is a sample of a simple trading system. It buys on a stop
at the Highest High of the past 20 days and sells (short) on the
Lowest Low of the past 20 days. It incorporates $2000 protective
stop and liquidates any loss after 10 trading days.

There are several built-in functions at your disposal. The
following code provides the syntax for accessing them. Some are
functions and some are subroutines. Make sure you use the
right number of parameters for the functions/subroutines.

The most import subroutine is the Trade routine. This is the
subroutine that you will use most often.

You call this subroutine whenever you ready to place an order.

Here are the different combinations one could use to place orders.

Call Trade(Buy, "MyBuyName" , Price , stp, i) - buys on stop
Call Trade(Buy, "MyBuyName" , myOpen, mkt, i) - buys market on Open
Call Trade(Buy, "MyBuyName" , myClose,mkt, i) - buys market on Close
Call Trade(Buy, "MyBuyName" , Price , lmt, i) - buys on limit

You can call the Trade subroutine with Sell, ExitLong, and ExitShort.

Call Trade(ExitLong, "MyExitLongName" ,Price, stp, i)
Call Trade(ExitShort, "MyExitShrtName" ,Price, stp, i)
Call Trade(Sell, "MySellName" ,Price, stp, i)

Also read the notes at the top of the actual VB code when you open
the source code from the VB Editor. Also remember you must change
the contract specifications in Module 2 inside the RunSystemTester()
subroutine. You must know the PointValue, MinTick and the number
of days you will need for your calculations. The SystemTester is
preloaded with Crude Oil data. You can see how this subroutine is
modified to work with this particular market. If any of the
parameters are incorrect, you will have inaccurate results or
Excel will halt execution. Copy and paste the data to test from the text files.

'**
'**** Main Trading Loop ****
'**
Do While i <= numRecords

 i = i + 1 'Leave in.
 intraDayTrdCnt = 0 'Leave in.

 If barsLong <> 0 Then barsLong = barsLong + 1 'Leave in.
 If barsShort <> 0 Then barsShort = barsShort + 1 'Leave in.

SystemTesterManual Wed, May 7, 2008 2

'**
'**** This is a good place to put all of your function calls ****
'**** and system calculations. ****
'**

 Call BollingerBand(myClose, 10, 2, avg, upBand, dnBand, i, 1)
 simpleAvg = Average(myClose, 10, i, 1)
 rsiVal = RSI(myClose, 14, i, 1)
 Call Stochastic(3, 4, 7, stoK, stoD, slowD, i, 1)

'**
'**** Put All Of Your Orders Here ****
'**

 If marketPosition <> 1 Then
 Call Trade(Buy, "D-Buy", Highest(myHigh, 20, i, 1), stp, i)
 End If
 If marketPosition <> -1 Then
 Call Trade(Sell, "D-Sell", Lowest(myLow, 20, i, 1), stp, i)
 End If
 If marketPosition = -1 Then
 Call Trade(ExitShort, "ExitShortStop", entryPrice + 2000 / TickValue, stp, i)
 If barsShort > 10 And myClose(i) > entryPrice Then
 Call Trade(ExitShort, "10dayShOut", myClose(i), moc, i)
 End If
 End If
 If marketPosition = 1 Then
 Call Trade(ExitLong, "ExitLongStop", entryPrice - 2000 / TickValue, stp, i)
 If barsLong > 10 And myClose(i) < entryPrice Then
 Call Trade(ExitLong, "10dayLgOut", myClose(i), moc, i)
 End If
 End If

'**
'**** End of Main Traiding Loop ****
'**** No orders allowed below this point ****
'**

